70 research outputs found

    Quantum Emitters near Layered Plasmonic Nanostructures: Decay Rate Contributions

    Full text link
    We introduce a numerical framework for calculating decay rate contributions when excited two-level quantum emitters are located near layered plasmonic nanostructures, particularly emphasizing the case of plasmonic nanostructures atop metal substrates where three decay channels exist: free space radiation, Ohmic losses, and excitation of surface plasmon polaritons (SPPs). The calculation of decay rate contributions is based on Huygen's equivalence principle together with a near-field to far-field transformation of the local electric field, thereby allowing us to discern the part of the electromagnetic field associated with free propagating waves rather than SPPs. The methodology is applied to the case of an emitter inside and near a gap-plasmon resonator, emphasizing strong position and orientation dependencies of the total decay rate, contributions of different decay channels, radiation patterns, and directivity of SPP excitation

    Gradient metasurfaces: a review of fundamentals and applications

    Full text link
    In the wake of intense research on metamaterials the two-dimensional analogue, known as metasurfaces, has attracted progressively increasing attention in recent years due to the ease of fabrication and smaller insertion losses, while enabling an unprecedented control over spatial distributions of transmitted and reflected optical fields. Metasurfaces represent optically thin planar arrays of resonant subwavelength elements that can be arranged in a strictly or quasi periodic fashion, or even in an aperiodic manner, depending on targeted optical wavefronts to be molded with their help. This paper reviews a broad subclass of metasurfaces, viz. gradient metasurfaces, which are devised to exhibit spatially varying optical responses resulting in spatially varying amplitudes, phases and polarizations of scattered fields. Starting with introducing the concept of gradient metasurfaces, we present classification of different metasurfaces from the viewpoint of their responses, differentiating electrical-dipole, geometric, reflective and Huygens' metasurfaces. The fundamental building blocks essential for the realization of metasurfaces are then discussed in order to elucidate the underlying physics of various physical realizations of both plasmonic and purely dielectric metasurfaces. We then overview the main applications of gradient metasurfaces, including waveplates, flat lenses, spiral phase plates, broadband absorbers, color printing, holograms, polarimeters and surface wave couplers. The review is terminated with a short section on recently developed nonlinear metasurfaces, followed by the outlook presenting our view on possible future developments and perspectives for future applications.Comment: Accepted for publication in Reports on Progress in Physic

    Plasmonic metagratings for simultaneous determination of Stokes parameters

    Full text link
    Measuring light's state of polarization is an inherently difficult problem, since the phase information between orthogonal polarization states is typically lost in the detection process. In this work, we bring to the fore the equivalence between normalized Stokes parameters and diffraction contrasts in appropriately designed phase-gradient birefringent metasurfaces and introduce a concept of all-polarization birefringent metagratings. The metagrating, which consists of three interweaved metasurfaces, allows one to easily analyze an arbitrary state of light polarization by conducting simultaneous (i.e., parallel) measurements of the correspondent diffraction intensities that reveal immediately the Stokes parameters of the polarization state under examination. Based on plasmonic metasurfaces operating in reflection at the wavelength of 800 nm, we design and realize phase-gradient birefringent metasurfaces and the correspondent metagrating, while experimental characterization of the fabricated components convincingly demonstrates the expected functionalities. We foresee the use of the metagrating in compact polarimetric setups at any frequency regime of interest

    Beam-Size Invariant Spectropolarimeters Using Gap-Plasmon Metasurfaces

    Get PDF
    Metasurfaces enable exceptional control over the light with surface-confined planar components, offering the fascinating possibility of very dense integration and miniaturization in photonics. Here, we design, fabricate and experimentally demonstrate chip-size plasmonic spectropolarimeters for simultaneous polarization state and wavelength determination. Spectropolarimeters, consisting of three gap-plasmon phase-gradient metasurfaces that occupy 120{\deg} circular sectors each, diffract normally incident light to six predesigned directions, whose azimuthal angles are proportional to the light wavelength, while contrasts in the corresponding diffraction intensities provide a direct measure of the incident polarization state through retrieval of the associated Stokes parameters. The proof-of-concept 96-{\mu}m-diameter spectropolarimeter operating in the wavelength range of 750-950nm exhibits the expected polarization selectivity and high angular dispersion. Moreover, we show that, due to the circular-sector design, polarization analysis can be conducted for optical beams of different diameters without prior calibration, demonstrating thereby the beam-size invariant functionality. The proposed spectropolarimeters are compact, cost-effective, robust, and promise high-performance real-time polarization and spectral measurements

    Recombinant proteins from Gallibacterium anatis induces partial protection against heterologous challenge in egg-laying hens

    Get PDF
    International audienceAbstractGallibacterium anatis is a Gram-negative bacterium and major cause of salpingitis and peritonitis in egg-laying hens, thereby contributing to decreased egg production and increased mortality among the hens. Due to widespread drug resistance and antigenic diversity, novel prophylactic measures are urgently required. The aim of the present study was to evaluate the cross-protective capacity of three recombinant proteins recently identified as potential vaccine candidates; GtxA-N, GtxA-C, and FlfA, in an in vivo challenge model. Nine groups of birds were immunized twice with each protein, respectively, with 14 days separation. Additionally, three groups served as non-immunized controls. After 3 weeks, the birds were challenged with either of three G. anatis strains: 12656-12, 7990 or IPDH 697-78, respectively. Blood samples were taken at three different time points prior to challenge, as well as 48 h after challenge. All birds were euthanized and subjected to a post mortem procedure including scoring of lesions and sampling for bacterial growth. Moreover, ELISA assays were used to quantify antigen-specific IgG titers in serum. The results showed that all three proteins induced protection against the homologous strain 12656-12. No protein induced complete protection against strain 7990, although FlfA reduced the bacterial re-isolation rate. Moreover, immunization with GtxA-N and FlfA induced protection, while GtxA-C reduced the bacterial re-isolation, against strain IPDH 697-78. Thus although complete cross-protection against all three strains was not achieved, the results hold great promise for a new generation of immunogens in the search for novel prophylactic measures against G. anatis

    Random-phase metasurfaces at optical wavelengths

    Get PDF
    Random-phase metasurfaces, in which the constituents scatter light with random phases, have the property that an incident plane wave will diffusely scatter, hereby leading to a complex far-field response that is most suitably described by statistical means. In this work, we present and exemplify the statistical description of the far-field response, particularly highlighting how the response for polarised and unpolarised light might be alike or different depending on the correlation of scattering phases for two orthogonal polarisations. By utilizing gap plasmon-based metasurfaces, consisting of an optically thick gold film overlaid by a subwavelength thin glass spacer and an array of gold nanobricks, we design and realize random-phase metasurfaces at a wavelength of 800 nm. Optical characterisation of the fabricated samples convincingly demonstrates the diffuse scattering of reflected light, with statistics obeying the theoretical predictions. We foresee the use of random-phase metasurfaces for camouflage applications and as high-quality reference structures in dark-field microscopy, while the control of the statistics for polarised and unpolarised light might find usage in security applications. Finally, by incorporating a certain correlation between scattering by neighbouring metasurface constituents new types of functionalities can be realised, such as a Lambertian reflector
    • …
    corecore